
dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦

Feb 13, 2021

CONTENTS

1 JDAT and Jdaviz 3

2 JDAT Notebooks 5

3 JDAT Development Sprints 7

4 Table of Contents 9
4.1 Development Procedure . 9

4.1.1 Draft Stage . 9
4.1.2 Baseline Stage . 10
4.1.3 Notebook-driven Development . 11
4.1.4 Advanced Stage . 11
4.1.5 Final Notebook - Maintenance Stage . 12
4.1.6 Revision Based on Community Feedback . 12

4.2 Submitting Notebooks . 12
4.2.1 Check List . 13
4.2.2 Box Submissions . 13
4.2.3 GitHub Submissions . 13
4.2.4 GitHub Guidelines . 14
4.2.5 Review Process . 19

4.3 Data Files . 19
4.3.1 Uploading Data to Box . 19
4.3.2 Box URLs in Notebooks . 21

4.4 Jupyter Notebooks . 22
4.4.1 Installation . 22
4.4.2 Starting a Notebook . 23
4.4.3 Creating a New Notebook . 23
4.4.4 Markdown . 23
4.4.5 Developer Notes . 23
4.4.6 Clearing Notebook Outputs . 24
4.4.7 Multiple Notebooks . 24
4.4.8 Pep-8 Guideline . 24

4.5 Requirements File . 25
4.6 Useful Links . 26
4.7 Developers and Staff . 26

4.7.1 STScI Notebook Leads . 26
4.7.2 Technical Review . 27
4.7.3 Science Review . 28

i

ii

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

CONTENTS 1

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

2 CONTENTS

CHAPTER

ONE

JDAT AND JDAVIZ

The James Webb Space Telescope Data Analysis Tool (JDAT) team at the Space Telescope Science Institute (STScI) is
developing analysis and visualization tools for the upcoming James Webb Space Telescope (JWST). JDAT is involved
with the development of astropy (https://www.astropy.org) core and its affiliated analysis tools (such as specutils
(https://specutils.readthedocs.io/en/stable/) and photutils (https://photutils.readthedocs.io/en/stable/)). JDAT is also
responsible for the development of the JWST Data Analysis Visualization tools (Jdaviz). Jdaviz is a package of
astronomical data analysis and visualization tools based on the Jupyter platform. The Jdaviz package includes the
following visualization applications:

Application Description
Specviz Visualization and quick-look analysis for 1D astronomical spectra.
Cubeviz Visualization and analysis tool for data cubes from integral field units (IFUs).
MOSviz Visualization and quick-look analysis tool for multi-object spectroscopy (MOS).

See also:

• For more information on JDAT please see the Data Analysis Tools JDox Page (https://jwst-docs.stsci.edu/jwst-
post-pipeline-data-analysis).

• For more information on Jdaviz, please visit the Jdaviz documentation
(https://jdaviz.readthedocs.io/en/latest/).

3

https://www.astropy.org
https://specutils.readthedocs.io/en/stable/
https://photutils.readthedocs.io/en/stable/
https://jwst-docs.stsci.edu/jwst-post-pipeline-data-analysis
https://jdaviz.readthedocs.io/en/latest/

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4 Chapter 1. JDAT and Jdaviz

CHAPTER

TWO

JDAT NOTEBOOKS

The JDAT team is seeking help from the scientific community to develop example notebooks that outline scientific
workflows utilizing the analysis and visualization tools developed by the team. These notebooks will be made available
to the public to serve as teaching resources and a form of interactive documentation of the analysis tools.

The submitted notebooks should satisfy the following goals:

1. Reduce and analyze JWST data (we currently use simulated or similar data).

2. Showcase analysis and visualization tools.

3. Drive development by identifying missing functionalities in the tools and libraries.

Note: Completed notebooks are rendered and made available to the public in the jdat_notebooks
(https://github.com/spacetelescope/jdat_notebooks) repository. Development of new notebooks is facilitated through
the dat_pyinthesky (https://github.com/spacetelescope/dat_pyinthesky) repository.

5

https://github.com/spacetelescope/jdat_notebooks
https://github.com/spacetelescope/dat_pyinthesky

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

6 Chapter 2. JDAT Notebooks

CHAPTER

THREE

JDAT DEVELOPMENT SPRINTS

The JDAT team at STScI develops the Jdaviz applications during two week sprints through out the year. During this
time developers are available to assist with the development of notebooks. Notebook leads are strongly encouraged
to participate in the JDAT sprints while composing their notebooks because it offers an opportunity to work with the
developers and gain exposure to the latest tools. During a Sprint, we expect notebook leads to learn how to contribute
their science expertise towards the development of tools via GitHub issues, JIRA tickets, Jupyter Notebook coding,
communication with developers, and all the machinery in between. The JDAT team also has staff members dedicated to
helping notebook leads with GitHub and Box related workflows. If you are interested in joining these sprints, please
contact one of the maintainers of the dat_pyinthesky (https://github.com/spacetelescope/dat_pyinthesky) repository or
file a ticket in the STScI help desk (https://stsci.service-now.com/hst). STScI and affilated staff should refer to the
STScI Notebook Leads section for instructions.

7

https://github.com/spacetelescope/dat_pyinthesky
https://stsci.service-now.com/hst

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

8 Chapter 3. JDAT Development Sprints

CHAPTER

FOUR

TABLE OF CONTENTS

4.1 Development Procedure

This document is a description of the JWST Data Analysis Tools (JDAT) approach to “Notebook-Driven Develop-
ment”. The procedures here outline the process for getting a notebook through successive development stages to
become something that can be “live” on the spacetelescope notebooks repository.

These notebooks can have many varied science cases, but follow a relatively standard workflow:

1. Draft Stage

2. Baseline Stage

3. Notebook-driven development

4. Advanced Stage

5. Final Notebook - Maintenance Stage

6. Revision based on Community feedback

These stages and the process for moving from one to the other are described below.

The procedure to submit the notebook via a Pull Request is described at the GitHub section of this documenta-
tion. This is repeated for each of the 5 stages.

Note that there is much more information on writing Jupyter notebooks at the STScI notebook style
guide (https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md), and simi-
lar guidance for Python code at the STScI Python style guide (https://github.com/spacetelescope/style-
guides/blob/master/guides/python.md). These guidelines are in place to make review steps easier.

Important: Please note that all JDAT related code is written Python 3; Python 2 is not supported.

4.1.1 Draft Stage

The primary purpose of this stage is to record a scientific workflow, but without including actual code. This stage is
generally done primarily by a scientist. Reasonably often, notebooks can skip this stage if they are simpler or if the
underlying tools are already well-enough developed to be immediately implemented.

To begin a notebook at this stage, the notebook author should start with either the notebook template from the note-
book style guide (https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md) or a blank
Jupyter notebook. They then write out their workflow in words. Where possible, they put example code of the sort
they would like to see, even if it is not implemented yet.

For example, an author might write this in such a notebook:

9

https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md
https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md
https://github.com/spacetelescope/style-guides/blob/master/guides/python.md
https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md
https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

In []: spectral_line = find_line(jwst_miri_spectrum)

`spectral_line` should be a list of line centers and names of lines indexed by
→˓spaxel,
found using a derivative-based line-finder.

even if the find_line function doesn’t yet exist anywhere.

The top-level header of the notebook (i.e., the title) should have “Draft: ” at the start to make it clear this is a draft
notebook. The filename should not have draft in it, however, as the filename will generally remain the same
throughout the later stages.

Once they have the draft ready, the author should create a pull request with the draft notebook’s content (see instruc-
tions at the end of this document).

4.1.2 Baseline Stage

The primary purpose of this stage is to get a functioning notebook to record a workflow. This stage is also typically
done by a scientist (although with developers available to ask questions). It is also frequently the first step of devel-
opment. That is, if the workflow is already reasonable to implement with existing tools, the draft notebook is not
necessary.

In this stage the notebook should actually execute from beginning to end, but it is fine to be “rough around the edges”.
E.g., the notebook might have several cells that say things like:

In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(...
→˓))

the scientist might think this is too complicated, and so to communicate their desire for an improved workflow, they
create a “Developer Note”. A developer note should be a part of the notebook itself and should be a single markdown
cell (not code cell - code examples in a dev note can be done as literal markdown blocks - i.e. surrounded by ```
for blocks or ` for inline code). That cell should begin with the text *Developer Note:*. E.g., a markdown cell
might be added below the above cell in a notebook, which would say:

Developer Note:
Creating the spectrum above is a bit complicated, and it would improve the workflow
→˓if there was a single
simple function that just did `spec = simulate_jwst_spectrum(a, b)`.

thereby providing guidance for where specific development would simplify the workflow.

If a notebook is freshly created in this form, the author can follow the “Procedure to submit a notebook as a Pull
Request” (found at the end of this document), skipping the Draft Stage step.

If the notebook was already created in the Draft Stage step and the “Procedure to submit a notebook as a Pull Request”
has already been followed, the author should just create a new branch to modify the existing code and then create a
new Pull Request with the changes once they are ready.

In either case, the title (but not filename) of the notebook should begin with “Baseline:” to indicate the notebook is in
the Baseline Stage.

Once the Pull Request has been created, the notebook will automatically be built in the repository so that reviewers
can view it. Reviewers can then comment on the notebook in Github. At this stage the bar is still relatively low for
review - primarily things like ensuring the notebook does run from beginning-to-end and that data files or the like were
not accidentally committed to the repository.

Finally, there are three important technicalities for notebooks that become relevant at this stage (and continue for future
stages):

10 Chapter 4. Table of Contents

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

1. The output cells of a notebook should always be cleared before a git commit is made. Notebook outputs can
sometimes be quite large (in the megabytes for plots or the like), and git is intended for source code, not data. Clearing
the outputs also ensures the notebook can be run from beginning to end and therefore be reproduced by others.

2. Any data files required for a notebook need to be accessible by others who may be reviewing or test-
ing the notebook. The STScI guidelines on data storage for notebooks (https://github.com/spacetelescope/style-
guides/blob/master/guides/where-to-put-your-data.md) should be followed here. The specific addition for the JWST
Notebooks is that notebook data should be in the DMD_Managed_Data/JWST/jwst-data_analysis_tools
Box folder (or subfolders thereof). If you do not have access to this box folder already, ask a Project Scientist and
they should be able to get you added. Note that if a baseline notebook is using data that should not yet be public, the
easiest choice is probably central store, but in that case it is critical that the notebook state prominently that it must be
run inside the STScI network.

3. A notebook should state clearly what version of various dependencies were used to generate the notebook. These
versions should be placed in a requirements file in the same directory as the notebook itself. An example of
this file is in the``example_notebook`` folder. That will ensure reviewers/testers can be sure that if they encounter
problems, it is not due to software version mis-matches.

The notebook will undergo a scientific and a technical review, which might also yield additional developer notes. It
will then be merged into the repository once the review comments have been addressed. This concludes the Baseline
Stage.

4.1.3 Notebook-driven Development

Along and after the Draft and Baseline stages, there is potential for considerable development to be necessary. A
baseline notebook may contain a large number of areas where more development is desired in data analysis tools, or
it may only require a few minor adjustments (or none at all!). This stage is therefore the most flexible and dependent
on developer resources, etc. In general the intent is for developers to be able to re-use bits of code from the notebook
as tests for development, while occasionally (if necessary) asking the notebook author for guidance to ensure the
implementation actually meets the notebook’s needs. There is not a formal process for this step, but it is intended
that the JDAT planning process (currently on Jira) keeps track of specific steps needed before a given notebook can
proceed on to the next stage.

4.1.4 Advanced Stage

Once a baseline notebook has been completed, the next stage is to build the baseline into a notebook that uses the
DAT’s or associated community-developed software as consistently as possible. This is typically done via a developer
reviewing a baseline notebook and working with the scientist to develop additional DAT code, particularly focused on
resolving the “developer notes”. It is at the discretion of the notebook author and developer together which of them
actually modifies the notebook and sources the Pull Request, but it is likely both will be involved to some degree.
An example approach is for the developer to take the baseline notebook, mark it up with comments like (using the
example from above):

In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(...
→˓))

Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single simple
function that just did spec = simulate_jwst_spectrum(a, b)

Development:
This has now been implemented as JWSTSimulator.make_spectrum(a, b,
→˓anotherparameterthatturnsouttobeimportant). Can you try that and ensure it works
→˓here?

4.1. Development Procedure 11

https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

and then create a git commit with these comments. The original author would then address the comments in a follow-
on commit. There might be multiple pull requests of this sort as the notebook driven development continues. But
once all developer notes have been addressed, the developer and author can declare the notebook ready to be called
“Advanced”.

Once the notebook authors (original author and developer/reviewer) have agreed it is ready, one of them follows the
Pull Request workflow as described above, but with the notebook title now changed to be just the title itself (no
“Draft:” or Baseline:”). The Pull Request is then reviewed by one of the project scientists, and merged when everyone
is satisfied with the notebook.

4.1.5 Final Notebook - Maintenance Stage

The final stage for the notebook is release on the official STScI notebook repository
(https://github.com/spacetelescope/notebooks). Specific documentation for this last stage is given in the reposi-
tory itself. However, that repository and the working repository here have very similar structure, so it is in principle
simply a matter of copying the advanced notebook over to a form of the release repository and doing one final Pull
Request. Note, however, that other STScI reviewers may comment on this stage. It is also important for the authors
to do an additional check over the notebook to ensure that it uses released (not developer) versions of requirements
where possible. It is also a good opportunity to fill in the scientific context of a given notebook - e.g. add a motivation
section, or a final plot at the bottom that shows the final science result. Once this is done, and the Pull Request
merged, the notebook can be declared complete.

4.1.6 Revision Based on Community Feedback

Of course, science does not stand still! As time passes some of the completed notebooks may have enhancements
or changes necessary. In general these follow the standard Pull Request workflow and can be submitted by anyone
once the notebook is public (both in and out of STScI). While the repo maintainers manage this process, the notebook
authors may be called in from time to time to provide opinions or perspectives on any proposed changes.

4.2 Submitting Notebooks

This section outlines how to submit notebooks. New notebooks development occurs in the dat_pyinthesky
(https://github.com/spacetelescope/dat_pyinthesky) repository. As such, new notebooks should be submitted by mak-
ing a pull request (PR) in the STSCI dat_pyinthesky repository (this is the Pre-Baseline Stage). After the review
process, the notebooks will be merged (this is the Baseline Stage). At this point, it will be public to the community
and will be moved to a cleaner github repo jdat_notebooks (https://github.com/spacetelescope/jdat_notebooks) where
notebooks are also rendered (https://spacetelescope.github.io/jdat_notebooks/). All further development will happen
directly in the dat_pyinthesky (https://github.com/spacetelescope/dat_pyinthesky) repository!

What to Submit:

1. Data Files (Upload to Box).

2. Jupyter Notebooks (Upload to GitHub).

3. Requirements File (Upload to GitHub).

12 Chapter 4. Table of Contents

https://github.com/spacetelescope/notebooks
https://github.com/spacetelescope/dat_pyinthesky
https://github.com/spacetelescope/jdat_notebooks
https://spacetelescope.github.io/jdat_notebooks/
https://github.com/spacetelescope/dat_pyinthesky

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.2.1 Check List

Before and after submitting your notebook, requirement files and data, please make sure the following items are in
order:

- [] Box:

- [] Data has been uploaded to box.
- [] The data is bing shared via link. Make sure the settings allow for anyone

→˓with a link to download.

- [] GitHub:

- [] Notebook has all cell outputs cleared out.
- [] Notebook is written in `Python 3`
- [] All imports occur at the beginning of the notebook.
- [] All data is loaded into the notebook via a URL from box. (No local files

→˓being used).
- [] Verify that the python code satisfies PEP 8.
- [] Comments and unused lines of code are removed.
- [] `requirements.txt` file is included.

Tip: If you copy and paste this checklist into your PR as a comment or description, it will render as a checklist with
radio buttons you can toggle any time.

4.2.2 Box Submissions

All data files should be uploaded to STScI’s box folder and made sharable via URL. All notebooks should use human
readable URLs in the notebooks when loading/reading data. For instructions on submitting data files, please visit the
Uploading Data to Box section.

4.2.3 GitHub Submissions

Science Notebooks and requirements files files should be submitted by making a pull request against the main branch
of the STScI dat_pyinthesky (https://github.com/spacetelescope/dat_pyinthesky) repository. For instructions on how
to crate a GitHub pull request, please see the GitHub Guidelines section of this documentation.

Important: New notebooks should be added to the dat_pyinthesky/jdat_notebooks directory.

You must first create a new folder in the dat_pyinthesky/jdat_notebooks directory and name the new
folder something relevant to the topic of the notebooks being submitted (think of this a short title). For example,
dat_pyinthesky/jdat_notebooks/spectral_fitting. This “title” will also be used to name the folder
on Box containing the data files used by the notebook. After creating a new folder and naming it, please place all
notebooks and requirement files inside of it.

The folder name (“short title”) should be:

• Related to the topic of the notebooks.

• Unique to avoid confusion/conflicts with existing notebooks.

• Reasonable in length (makes navigating in a terminal easy).

4.2. Submitting Notebooks 13

https://github.com/spacetelescope/dat_pyinthesky

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• All small letters.

• Using underscores instead of spaces. For example “spectral fitting” -> “spectral_fitting”

4.2.4 GitHub Guidelines

GitHub Setup

GitHub Accounts

GitHub, is provider of internet hosting for software development and version control using Git. It offers the distributed
version control and source code management functionality of Git, plus its own features. If you don’t have a GitHub
account, please visit GitHub’s sign up page (https://github.com/join).

Repository Setup

Step 1: Fork the STScI Repository

The first step is to create a GitHub copy of the STScI dat_pyinthesky
(https://github.com/spacetelescope/dat_pyinthesky) repository. The copied repository on your GitHub account
is called a “fork”. To make a fork, click on the ``fork`` button at the upper right corner of the STScI’s dat_pyinthesky
(https://github.com/spacetelescope/dat_pyinthesky) repository. A dialog should popup up and you can select your
GitHub account to create the fork.

Step 2: Clone the Repositories

After you create a fork of the STScI repository, you should now have a copy of the STScI repository under your
GitHub account. The next step is to make a copy of both your and STScI’s GitHub repositories on your local machine.
That way you can make edits on your computer and send the changes to your online repository (fork). The process of
making a local copy is called cloning. To clone the dat_pyinthesky repos, open up a terminal window and cd
into a directory you would like to save your local copy. Then run the following bash commands:

clone the repository
git clone https://github.com/spacetelescope/dat_pyinthesky

cd into the local repository (clone)
cd dat_pyinthesky

rename the online version of the repo
from "origin" to "stsci" (since you cloned STScI's version)
git remote rename origin stsci

Next, you want to link your online GitHub version of the repository (fork) to your local version. Copy the URL to
your fork and run the following command in the terminal (make sure you are still in the dat_pyinthesky folder
in the terminal):

add your GitHub copy
git remote add <your_github_username> <your_fork_url>

14 Chapter 4. Table of Contents

https://github.com/join
https://github.com/spacetelescope/dat_pyinthesky
https://github.com/spacetelescope/dat_pyinthesky

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Warning: Make sure not to confuse your fork’s URL with the official STScI URL. Your fork’s URL will have the
following format:

https://github.com/<your_github_username>/dat_pyinthesky

Step 3: Check Remote URLs

At this point, you have finished setting up your local clone of the repository. To check if the setup was successful, run
the following command to list URLs:

list remote URLs
git remote -v

This should return:

<your_github_username> https://github.com/<your_github_username>/dat_pyinthesky.git
→˓(fetch)
<your_github_username> https://github.com/<your_github_username>/dat_pyinthesky.git
→˓(push)
stsci https://github.com/spacetelescope/dat_pyinthesky.git (fetch)
stsci https://github.com/spacetelescope/dat_pyinthesky.git (fetch)

Step 4: Create a New Branch

Next, create a new branch and name it. You can name your new branch anything relevant to your notebook. Its best to
use a short name since you wll need to type it in the terminal often. Do this by running:

git checkout -b <branch_name>

This will automatically change the current branch to the new branch; it will stay on this branch until you manually
change it or create a new one.

Tip: To change to an already existing branch, run git checkout <branch_name>

Step 5: Synchronize New Branch to STScI

You should update the branch to make sure its in sync with the STScI main branch. To do this, run:

Fetch changes
git fetch stsci main

Pull (download) changes
git pull stsci main

Git and GitHub Workflow

This section outlines the Git and GitHub workflow. Each time you update your notebook, follow the instructions below
to “save” your changes. The workflow outlined in the sub-sections below can be summarized with the following set
of commands:

cd into directory
cd dat_pyinthesky/jdat_notebooks/<name_of_your_folder>

Check status

(continues on next page)

4.2. Submitting Notebooks 15

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

git status

Add files to commit
For each file, run:
git add <file_name>

Check status (files added should be in green)
git status

Commit with comments
git commit -m "short description of changes"

When ready to upload, Push to your fork
git push <your_github_username> <branch_name>

Step 1: Prepare Files Locally

Next step is to create or update your files to your local repository before uploading them to GitHub. As mentioned
above, create a new folder with your project name in the dat_pyinthesky/jdat_notebooks directory. Add
your Science Notebooks and requirements files into the new folder. Please make sure to clear cell ouputs in your
notebooks before continuing.

Note: Remember to clear all cell outputs in your notebooks. See the Clearing Notebook Outputs for instructions.

Step 2: Add

Using your terminal, you must first cd into the folder you created:

cd dat_pyinthesky/jdat_notebooks/<name_of_your_folder>

Check Status: First step is to check what changes are available to be added and committed to the repository history.
To get a list of changes and their status, run:

git status

This will return a list of files that have been added to the local repository. Files that are not staged for commit, are
highlighted in red. Files staged for commit are listed in green. To select file to be staged for commit, you must first
“add” them. Thing of “adding” as selecting which files you want to include in your commit.

Add Files to Upload: To add files to commit, run the following command for each file:

git add <file_name>

Check Status Again: After adding the files, you should check one more time if the files you intend to commit are
staged. To do this, run:

git status

This time the files you selected should be in green font under Changes to be committed.

Step 3: Commit

Now you may commit the files to your local git history. When you commit changes, you should leave short comments
describing the changes being introduced in the commit. To add a comment, you can append -m "comments" at the
end of the commit command. To commit changes with a comment, run the following command:

16 Chapter 4. Table of Contents

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

git commit -m "short description of changes"

Step 4: Push

You can now push (upload) the changes to your GitHub fork. To do this, run the following command:

git push <your_github_username> <branch_name>

Tip: If you are not sure what branch you are working on, run git branch

You will be prompted for your GitHub user name and password. After entering your credentials, your changes will be
uploaded to your GitHub fork (online copy).

Making a Pull Request (PR)

Step 1: Open PR Tab on GitHub

To create a pull request, navigate to the STScI dat_pyinthesky (https://github.com/spacetelescope/dat_pyinthesky)
repository on GitHub and click on the Pull Request:

Step 2: Click New PR Button

Step 3: Compare Across Forks

Step 4: Select Your Fork and Branch

Use the drop down menu to select your fork and branch. If you can not find your branch, first try to refresh the page.
If you still can not find your branch, something probably went wrong in the Git and GitHub Workflow section.

4.2. Submitting Notebooks 17

https://github.com/spacetelescope/dat_pyinthesky

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Note: Make sure the base repository (left side) is set to the spacetelescope/dat_pyinthesky and
main branch.

Step 5: Write a Description and Create PR

Once the PR form pops up, fill in the title with the name of your notebook or project. In the description box, leave a
description of your notebook and the data it uses.

Tip: If you copy and paste the checklist in the Check List section, it will render as a checklist with radio buttons you
can toggle any time.

Step 6: Updating Your PR

Once the PR is created, you can update it by pushing new changes to your fork. This means that you can simply
follow the steps described in the Git and GitHub Workflow section and GitHub will automatically update your PR to
reflect the changes.

See also:

For more information on making pull request visit the GitHub PR documentation
(https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request)

18 Chapter 4. Table of Contents

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.2.5 Review Process

After creating a Pull Request (PR), your PR will undergo a science and technical review. The automatic testing
infrastructure will also attempt to render your notebook. Reviewers will leave comments in your PR with suggested
changes or give their approval. If changes are recommended or requested, you can update your PR via the steps
described in the Git and GitHub Workflow section. Once the all reviewers approve and the automated tests pass, the
PR will be merged into the official STScI repo.

4.3 Data Files

Since we will be sharing the notebooks with the astronomical community, the data analysed and visualized in the
notebooks need to be easily downloadable. As such, the JDAT team at STScI has set up a Box folder for distributing
data products. For security reasons, we only support data files hosted on STScI’s Box folder. Please follow the
guideline below on uploading and integrating your data files.

See also:

For the most up to date information on data storage at STScI, please visit the STScI guidelines on data storage for
notebooks. (https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md).

4.3.1 Uploading Data to Box

Important: In order to submit your data files, you will need a Box account. Please see the Box support page
(https://support.box.com/hc/en-us/articles/360044196373-The-Basics-of-Box) for instructions. Once you have your
Box account setup, contact the JDAT team for an email invite to the STScI jwst-data_analysis_tools folder.
If you are not an STScI staff member, please request access in your pull request.

Tip: If you have multiple files, you should put them in a zip file before uploading them to Box.

Step 1: Create a New Folder: Once you have access to the jwst-data_analysis_tools folder on Box, you
may create a new folder with the same name as the folder containing your notebook and requirements.txt (see
GitHub Submissions section for naming conventions). Once the folder is created, you may upload your data files into
that folder.

Step 2: Upload Data Files: To upload files, navigate into your the folder you created and select File under the
Upload menu.

4.3. Data Files 19

https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md
https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md
https://support.box.com/hc/en-us/articles/360044196373-The-Basics-of-Box

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Step 3: Sharing Settings: The files you uploaded should be shareable to the public. For each file you uploaded and
hover over the file name. Select the Share button to open the sharing options.

Once the sharing dialog opens up, make sure the Shared Link radio button is toggled on and that the People
with the link option is selected.

Once the file is shared, a blue link icon will appear next to the name of the file.

Note: Make sure the folder is also being shared and that the People with the link option is selected. You
can check by clicking the blue share button on the upper right corner of the page. You must be viewing the folder you
created before clicking the button.

20 Chapter 4. Table of Contents

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Step 4: Updating Data Files: You can upload new versions of your data on Box by right clicking the name of your
file and clicking Upload New Version:

4.3.2 Box URLs in Notebooks

Important: Files on the STScI Box are assigned a human readable link and we request that notebook leads use this
URL in their Notebooks.

Once your files are uploaded, you can use them in your notebooks via URL link. The human readable URL has the
following format:

https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/name_of_your_
→˓folder/name_of_file.extension

For example, lets say you created a folder called example_folder and added a file named example.fits, the
URL would be:

The path on box:
jwst-data_analysis_tools > example_folder > example.fits

The URL:
https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/example_folder/
→˓example.fits

You should now be able to use this URL just like any path in your notebook. In the example above, we can open the
fits file using astropy as follows:

from astropy.io import fits

(continues on next page)

4.3. Data Files 21

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

data_url = "https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/
→˓example_folder/example.fits"
hdu_list = fits.open(data_url)

Note: If you are not able to open your file using URLs, please let the team know or leave a developer note in your
notebook.

If you have to download a file or have a zip file, you can use the following code to download the file (and unzip for
zip files) inside the notebook:

import os

If the example dataset has already been downloaded, comment out these lines:
import zipfile
import urllib.request

boxlink = "https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/
→˓example_folder/example.zip"
boxfile = './example.zip' # Specify output path and file name of downloaded file

Download file
urllib.request.urlretrieve(boxlink, boxfile)

Unzip .zip file
zf = zipfile.ZipFile(boxfile, 'r')
zf.extractall()

This example will download and extract data files into the same directory containing the running notebook. Since how
you zip your files determines the directory structure of the unzipped data, please use your code to download the files
and check to make sure the paths in your notebook match the file structure of your unzipped data.

4.4 Jupyter Notebooks

Please see the Development Procedure section for notebook development guidelines.

See also:

For detailed instructions on formatting notebook, please visit the STScI notebook style guide.
(https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md)

4.4.1 Installation

For instructions on how to install Jupyter notebooks, please visit the Jupyter Installation page
(https://jupyter.org/install).

We also strongly recomend using Conda (https://docs.conda.io/projects/conda/en/latest/index.html) for manag-
ing environments. If you need instructions on how to setup Conda, please see the Conda’s Getting Started
(https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) documentation.

Important: Please note that all JDAT related code is written Python 3; Python 2 is not supported.

22 Chapter 4. Table of Contents

https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md
https://jupyter.org/install
https://docs.conda.io/projects/conda/en/latest/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.4.2 Starting a Notebook

In your terminal, cd into the directory you would like to work in and run jupyter notebook. If a web browser
does not pop up, use the URL in the terminal output to open the Jupyter home page.

4.4.3 Creating a New Notebook

To create a new notebook, navigate to the directory you would like to work in and select the Python 3 option under
the new menu item:

4.4.4 Markdown

“Markdowns” are used to add supporting literature to notebooks. To convert a cell to markdown, select it with your
courser and select markdown in the cell type drop down menu.

Once the cell converts to a markdown cell, you can enter your text and equations. If you have links to an image, you
can embed them and they will be rendered when you run the cell. After you are done editing, make sure to run the
cell (Shift + Enter) to render the markdown

See also:

See Adam Pritchard’s markdown cheatsheet (https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet)
for tips and instructions.

4.4.5 Developer Notes

Developer notes are used to leave notes or feedback for the JDAT developers. A developer note should be a part of the
notebook itself and should be a single markdown cell. That cell should begin with the text *Developer Note:*.
For example:

Developer Note:
Creating the spectrum above is a bit complicated, and it would improve the workflow
→˓if there was a single
simple function that just did `spec = simulate_jwst_spectrum(a, b)`.

4.4. Jupyter Notebooks 23

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.4.6 Clearing Notebook Outputs

All cell outputs of the notebook should be cleared before opening or updating a pull request. This is because fully
rendered notebooks with figures can take up large amounts of storage space. Please make sure your results are repro-
ducible (you do not need the outputs) because clearing the notebook is not revisable. To clear notebook cell outputs,
please click Kernel in the Jupyter menu and select Restart & Clear Output. After the notebook restarts,
make sure to save the notebook before closing and submitting it.

4.4.7 Multiple Notebooks

If you have multiple notebooks that need to run in a specific sequence, please name the notebooks by prepending a
number before each notebook title according to the sequence (up to 99 notebooks allowed). For example:

dat_pyinthesky
jdat_notebooks

example_folder
01_generate_simulated_data.ipynb
02_run_calibration_pipeline.ipynb
03_data_analysis.ipynb
requirements.txt

4.4.8 Pep-8 Guideline

Please see STScI’s Python Guideline (https://github.com/spacetelescope/style-guides/blob/master/guides/python.md)
and the official Pep-8 Guideline (https://www.python.org/dev/peps/pep-0008/) for more information.

See also:

• STScI notebook style guide (https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-
notebooks.md)

• STScI Python style guide (https://github.com/spacetelescope/style-guides/blob/master/guides/python.md)

24 Chapter 4. Table of Contents

https://github.com/spacetelescope/style-guides/blob/master/guides/python.md
https://www.python.org/dev/peps/pep-0008/
https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md
https://github.com/spacetelescope/style-guides/blob/master/guides/python.md

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.5 Requirements File

A pip requirements file is a text file, named requirements.txt, that contains a list of Python packages needed
to run science notebooks. When users download a science notebook, they need this requirements file to install the
necessary Python packages. Therefore, Notebook Leads will need to provide a requirements file in addition to their
notebooks.

Listing Packages: Each Python package should be listed in a new line in the requirements file. You should only list
packages imported into your notebook (used in your notebook). You can make a list of packages by looking though
import statements in your notebook. Packages that are native to Python, such as os or math, should not be listed in
the requirements file.

Tip: You can get a list of package versions by running conda list or pip list in your terminal.

To specify a version of the package, you can use the == operator (for example astropy==4.1). Please list all
requirement versions to match the conda or pip environment you used to develop your notebooks. If you need to add
a Python package only available on GitHub, you can list the module as follows:

Package on GitHub:
git+https://github.com/name_of_repo

If you need to specify a branch:
git+https://github.com/name_of_repo#branch_name

Example: Here is an example requirements file (requirements.txt):

numpy==1.19.1
jupyter==1.0.0
aplpy==2.0.3
astrodendro==0.2.0
astropy==4.0.1.post1
matplotlib==3.3.1
photutils==0.7.2
scipy==1.5.0
specutils==1.0
git+https://github.com/spacetelescope/jwst#0.16.2

Tip: To install packages in a requirements.txt file, use pip install -r requirements.txt

Warning: Before installing a new set of packages from a requirements file, one should consider cre-
ating a new Conda environment. If you need to setup Conda, please see the Conda’s Getting Started
(https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) documentation.

Sometimes, the dev team adds an extra requirement file named pre-requirements.txt. This file is used for the
testing infrastructure and should be installed before the requirements.txt. The notebook lead is not expected to
contribute the pre-requirements.txt file.

4.5. Requirements File 25

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4.6 Useful Links

• Jdaviz documentation (https://jdaviz.readthedocs.io/en/latest/)

• Data Analysis Tools JDox Page (https://jwst-docs.stsci.edu/jwst-post-pipeline-data-analysis)

• Technical details about the GitHub notebook stages and process (https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks/#Development-
Procedure-for-JDAT-Notebooks)

• Astropy core libraries (https://docs.astropy.org/en/stable)

• Astropy affiliated packages (https://www.astropy.org/affiliated/index.html)

• Visualization tools (https://github.com/spacetelescope/jdaviz)

• Existing notebooks (https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks)

• Pep 8 coding style guide (https://www.python.org/dev/peps/pep-0008/)

• Notebook Style Guide (https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-
notebooks.md)

4.7 Developers and Staff

4.7.1 STScI Notebook Leads

Important:

• Sign Up: Talk to Camilla Pacifici and Ori Fox to find a use case that suits your scientific and technical interests.

• Charge your timecard: P0004.06.05.09

Notebook Draft

Start writing your notebook and think through the following. Contact Cami or Ori along the way to ask questions.
We don’t expect you to perfectly integrate all tools on your own.

• Manage your time. Consider you will likely need to spend 50% of your time writing your notebook draft, and
50% in the Sprint and Review stage. A realistic rough estimate is 30 hours total, so 15 hours at each phase.

• Download the notebook template and make sure to document your work as much as possible. It is important
to communicate the purpose of your notebook and where you obtained your data, as well as the algorithms you
use to do the science.

– Where did you get your data?

– What is the scientific purpose of the notebook?

– Which tools/packages do you use?

• We prefer you use JWST simulated data, but we realize this is not always possible. Please communicate with
Cami and Ori in advance about where you will obtain your data.

• Does my desired functionality exist in astropy and, specifically, specutils, photutils, and the visualization tools?

– If so, am I using it? Am I using it correctly?

– If not, what needs to be done to enable it? Make a developer note inside your cell.

26 Chapter 4. Table of Contents

https://jdaviz.readthedocs.io/en/latest/
https://jwst-docs.stsci.edu/jwst-post-pipeline-data-analysis
https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks/#Development-Procedure-for-JDAT-Notebooks
https://docs.astropy.org/en/stable
https://www.astropy.org/affiliated/index.html
https://github.com/spacetelescope/jdaviz
https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks
https://www.python.org/dev/peps/pep-0008/
https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• Make sure parts of your code are devoted to science validation.

• Break the notebook down into many, focused cells. Follow the notebook style guide.

• Consider making your science as generalized as possible.

• If you get stuck, contact anyone above (step e) or use #jdadf_dev channel on slack.

• Upload your notebook on dat_pyinthesky as soon as you feel comfortable doing so.

Join a Sprint

When you have completed your notebook draft, you are ready to join a developer sprint.

• Contact either Cami or Ori to sign up for a 2-week long sprint when you can devote time to developing your
notebook. You will be invited to a number of different meetings throughout a 2 week period.

• Attend an Orientation Meeting the week before your Sprint is set to begin, including a live technical review to
understand the process.

• Prepare by bringing a list of developer notes and/or personal notes where you think your notebook could be
improved with new functionality built into the tools.

• Attend the kick-off meeting (usually Monday 2pm) where you will meet the team, learn about the Product
Owners (POs), and be assigned a scientific reviewer and a technical reviewer (this part can also happen offline).

• Schedule a meeting with your technical reviewer.mFocus on utilizing the correct libraries and functionality.
Learn to turn your notes into Jira tickets and GitHub issues, as well as the process for having those tickets
implemented and integrated back into your notebooks.

• Attend a couple tag-ups each week, which happen every morning at 10.30am via bluejeans; this will provide
you with an opportunity to focus on development of individual cells within a notebook

• Attend the Viz Tool hack hour (typically the second Monday of the sprint at 11am) to focus on notebook
workflow using the Viz Tools

• If you get stuck, contact anyone above (step e) or use #jdadf_dev channel on slack.

• Make sure parts of your code are devoted to science validation.

• Attend the Review meeting (usually at the end of the sprint on Monday at 1:30pm) and show your notebook
(this is also an opportunity to give feedback on the process).

4.7.2 Technical Review

Note: This page is under construction

Instructions for Technical Reviewers

The reviewer will need to:

• Verify that the language satisfies PEP 8.

• If not, suggest the appropriate changes.

• Check that the necessary data are stored as requested in the guidelines.

4.7. Developers and Staff 27

dat𝑝𝑦𝑖𝑛𝑡ℎ𝑒𝑠𝑘𝑦𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• Verify that the currently available core-libraries functionalities and visualization tools are used when needed. If
not (i.e., Author has written their own functionalities), suggest new code that calls the already available libraries.
Address the ‘Developer Notes’.

4.7.3 Science Review

Note: This page is under construction

Instructions for Science Reviewers

The reviewer will be provided the link to the PR. They will need to check that:

• The notebook shows a scientific result.

• The modeling used is sound.

• The plotting is clear.

• The comments are sufficient and clear.

28 Chapter 4. Table of Contents

	JDAT and Jdaviz
	JDAT Notebooks
	JDAT Development Sprints
	Table of Contents
	Development Procedure
	Draft Stage
	Baseline Stage
	Notebook-driven Development
	Advanced Stage
	Final Notebook - Maintenance Stage
	Revision Based on Community Feedback

	Submitting Notebooks
	Check List
	Box Submissions
	GitHub Submissions
	GitHub Guidelines
	Review Process

	Data Files
	Uploading Data to Box
	Box URLs in Notebooks

	Jupyter Notebooks
	Installation
	Starting a Notebook
	Creating a New Notebook
	Markdown
	Developer Notes
	Clearing Notebook Outputs
	Multiple Notebooks
	Pep-8 Guideline

	Requirements File
	Useful Links
	Developers and Staff
	STScI Notebook Leads
	Technical Review
	Science Review

