

 [image: _images/jda_notebooks_logo_wbg.png]

JWST Data Analysis Tool Notebooks (pyinthesky)

JDAT and Jdaviz

The James Webb Space Telescope Data Analysis Tool (JDAT) team at the Space Telescope Science Institute (STScI) is
developing analysis and visualization tools for the upcoming James Webb Space Telescope (JWST). JDAT is involved
with the development of astropy [https://www.astropy.org] core and its affiliated analysis tools (such as
specutils [https://specutils.readthedocs.io/en/stable/] and photutils [https://photutils.readthedocs.io/en/stable/]).
JDAT is also responsible for the development of the JWST Data Analysis Visualization tools (Jdaviz).
Jdaviz is a package of astronomical data analysis and visualization tools based on the Jupyter platform.
The Jdaviz package includes the following visualization applications:

	Application

	Description

	Specviz

	Visualization and quick-look analysis for 1D astronomical spectra.

	Cubeviz

	Visualization and analysis tool for data cubes from integral field units (IFUs).

	MOSviz

	Visualization and quick-look analysis tool for multi-object spectroscopy (MOS).

See also

	For more information on JDAT please see the Data Analysis Tools JDox Page [https://jwst-docs.stsci.edu/jwst-post-pipeline-data-analysis].

	For more information on Jdaviz, please visit the Jdaviz documentation [https://jdaviz.readthedocs.io/en/latest/].

JDAT Notebooks

The JDAT team is seeking help from the scientific community to develop example notebooks that outline scientific
workflows utilizing the analysis and visualization tools developed by the team. These notebooks will be
made available to the public to serve as teaching resources and a form of interactive documentation of the analysis tools.

The submitted notebooks should satisfy the following goals:

	Reduce and analyze JWST data (we currently use simulated or similar data).

	Showcase analysis and visualization tools.

	Drive development by identifying missing functionalities in the tools and libraries.

Note

Completed notebooks are rendered and made available to the public in the
jdat_notebooks [https://github.com/spacetelescope/jdat_notebooks] repository.
Development of new notebooks is facilitated through the
dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository.

JDAT Development Sprints

The JDAT team at STScI develops the Jdaviz applications during two week sprints through out the year. During this time
developers are available to assist with the development of notebooks. Notebook leads are strongly encouraged to participate
in the JDAT sprints while composing their notebooks because it offers an opportunity to work with the developers and gain
exposure to the latest tools. During a Sprint, we expect notebook leads to learn how to contribute their science expertise
towards the development of tools via GitHub issues, JIRA tickets, Jupyter Notebook coding, communication with developers,
and all the machinery in between. The JDAT team also has staff members dedicated to helping notebook leads with GitHub
and Box related workflows. If you are interested in joining these sprints, please contact one of the maintainers of
the dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository or file a ticket in the
STScI help desk [https://stsci.service-now.com/hst]. STScI and affilated staff should refer to the
STScI Notebook Leads section for instructions.

Table of Contents

	Development Procedure
	Draft Stage

	Baseline Stage

	Notebook-driven Development

	Advanced Stage

	Final Notebook - Maintenance Stage

	Revision Based on Community Feedback

	Submitting Notebooks
	Check List

	Box Submissions

	GitHub Submissions

	GitHub Guidelines
	GitHub Setup

	Git and GitHub Workflow

	Making a Pull Request (PR)

	Review Process

	Data Files
	Uploading Data to Box

	Box URLs in Notebooks

	Jupyter Notebooks
	Installation

	Starting a Notebook

	Creating a New Notebook

	Markdown

	Developer Notes

	Clearing Notebook Outputs

	Multiple Notebooks

	Pep-8 Guideline

	Requirements File

	Useful Links

	Developers and Staff
	STScI Notebook Leads
	Notebook Draft

	Join a Sprint

	Technical Review
	Instructions for Technical Reviewers

	Science Review
	Instructions for Science Reviewers

Development Procedure

This document is a description of the JWST Data Analysis Tools (JDAT) approach to
“Notebook-Driven Development”. The procedures here outline the process for
getting a notebook through successive development stages to become something
that can be “live” on the spacetelescope notebooks repository.

These notebooks can have many varied science cases, but follow a relatively
standard workflow:

	Draft Stage

	Baseline Stage

	Notebook-driven development

	Advanced Stage

	Final Notebook - Maintenance Stage

	Revision based on Community feedback

These stages and the process for moving from one to the other are described below.

The procedure to submit the notebook via a Pull Request is described at the
GitHub section
of this documentation. This is repeated for each of the 5 stages.

Note that there is much more information on writing Jupyter notebooks at the
STScI notebook style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md],
and similar guidance for Python code at the
STScI Python style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/python.md].
These guidelines are in place to make review steps easier.

Important

Please note that all JDAT related code is written Python 3; Python 2 is not supported.

Draft Stage

The primary purpose of this stage is to record a scientific workflow, but without including actual code.
This stage is generally done primarily by a scientist. Reasonably often, notebooks can skip this stage
if they are simpler or if the underlying tools are already well-enough developed to be immediately implemented.

To begin a notebook at this stage, the notebook author should start with either the notebook template
from the notebook style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md]
or a blank Jupyter notebook. They then write out their workflow in words. Where possible, they put
example code of the sort they would like to see, even if it is not implemented yet.

For example, an author might write this in such a notebook:

In []: spectral_line = find_line(jwst_miri_spectrum)

`spectral_line` should be a list of line centers and names of lines indexed by spaxel,
found using a derivative-based line-finder.

even if the find_line function doesn’t yet exist anywhere.

The top-level header of the notebook (i.e., the title) should have “Draft: ” at the start
to make it clear this is a draft notebook. The filename should not have draft in it,
however, as the filename will generally remain the same throughout the later stages.

Once they have the draft ready, the author should create a pull request with the draft notebook’s content (see
instructions at the end of this document).

Baseline Stage

The primary purpose of this stage is to get a functioning notebook to record a workflow.
This stage is also typically done by a scientist (although with developers available to ask questions).
It is also frequently the first step of development. That is, if the workflow is already reasonable
to implement with existing tools, the draft notebook is not necessary.

In this stage the notebook should actually execute from beginning to end, but it is fine to be
“rough around the edges”. E.g., the notebook might have several cells that say things like:

In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(...))

the scientist might think this is too complicated, and so to communicate their desire for an improved
workflow, they create a “Developer Note”. A developer note should be a part of the notebook itself and should be a
single markdown cell (not code cell - code examples in a dev note can be done as literal markdown blocks - i.e.
surrounded by ``` for blocks or ` for inline code). That cell should begin with the text *Developer Note:*.
E.g., a markdown cell might be added below the above cell in a notebook, which would say:

Developer Note:
Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single
simple function that just did `spec = simulate_jwst_spectrum(a, b)`.

thereby providing guidance for where specific development would simplify the workflow.

If a notebook is freshly created in this form, the author can follow the “Procedure to submit a notebook as a Pull Request”
(found at the end of this document), skipping the Draft Stage step.

If the notebook was already created in the Draft Stage step and the “Procedure to submit a notebook as a Pull Request”
has already been followed, the author should just create a new branch to modify the existing code and then create
a new Pull Request with the changes once they are ready.

In either case, the title (but not filename) of the notebook should begin with
“Baseline:” to indicate the notebook is in the Baseline Stage.

Once the Pull Request has been created, the notebook will automatically be built in the repository
so that reviewers can view it. Reviewers can then comment on the notebook in Github. At this stage
the bar is still relatively low for review - primarily things like ensuring the notebook does run from
beginning-to-end and that data files or the like were not accidentally committed to the repository.

Finally, there are three important technicalities for notebooks that become relevant at this stage
(and continue for future stages):

1. The output cells of a notebook should always be cleared before a git commit is made.
Notebook outputs can sometimes be quite large (in the megabytes for plots or the like), and git is intended
for source code, not data. Clearing the outputs also ensures the notebook can be run from beginning to end and
therefore be reproduced by others.

2. Any data files required for a notebook need to be accessible by others who may be reviewing or testing the notebook.
The STScI guidelines on data storage for notebooks [https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md]
should be followed here. The specific addition for the JWST Notebooks is that notebook data should be
in the DMD_Managed_Data/JWST/jwst-data_analysis_tools Box folder (or subfolders thereof).
If you do not have access to this box folder already, ask a Project Scientist and they should be able to get you added.
Note that if a baseline notebook is using data that should not yet be public, the easiest choice is probably central store,
but in that case it is critical that the notebook state prominently that it must be run inside the STScI network.

3. A notebook should state clearly what version of various dependencies were used to generate the notebook.
These versions should be placed in a requirements file in the same directory as the notebook itself. An example of this file
is in the``example_notebook`` folder.
That will ensure reviewers/testers can be sure that if they encounter problems, it is not due to software version mis-matches.

The notebook will undergo a scientific and a technical review, which might also yield additional developer notes. It will then
be merged into the repository once the review comments have been addressed. This concludes the Baseline Stage.

Notebook-driven Development

Along and after the Draft and Baseline stages, there is potential for considerable development
to be necessary. A baseline notebook may contain a large number of areas where more development is desired in data
analysis tools, or it may only require a few minor adjustments (or none at all!). This stage is therefore the most
flexible and dependent on developer resources, etc. In general the intent is for developers to be able to re-use
bits of code from the notebook as tests for development, while occasionally (if necessary) asking the notebook
author for guidance to ensure the implementation actually meets the notebook’s needs. There is not a formal
process for this step, but it is intended that the JDAT planning process (currently on Jira) keeps track of specific
steps needed before a given notebook can proceed on to the next stage.

Advanced Stage

Once a baseline notebook has been completed, the next stage is to build the baseline into a notebook that uses the DAT’s
or associated community-developed software as consistently as possible. This is typically done via a developer
reviewing a baseline notebook and working with the scientist to develop
additional DAT code, particularly focused on resolving the “developer notes”. It is at the discretion of the notebook
author and developer together which of them actually modifies the notebook and sources the Pull Request, but it is
likely both will be involved to some degree. An example approach is for the developer to take the baseline notebook,
mark it up with comments like (using the example from above):

In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(...))

Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single simple function that just did spec = simulate_jwst_spectrum(a, b)

Development:
This has now been implemented as JWSTSimulator.make_spectrum(a, b, anotherparameterthatturnsouttobeimportant). Can you try that and ensure it works here?

and then create a git commit with these comments. The original author would then address the comments in a
follow-on commit. There might be multiple pull requests of this sort as the notebook driven development
continues. But once all developer notes have been addressed, the developer and author can declare the notebook
ready to be called “Advanced”.

Once the notebook authors (original author and developer/reviewer) have agreed it is ready, one of them follows
the Pull Request workflow as described above, but with the notebook title now changed to be just
the title itself (no “Draft:” or Baseline:”). The Pull Request is then reviewed by one of the project scientists, and merged when
everyone is satisfied with the notebook.

Final Notebook - Maintenance Stage

The final stage for the notebook is release on the
official STScI notebook repository [https://github.com/spacetelescope/notebooks].
Specific documentation for this last stage is given in the repository itself. However, that repository and the
working repository here have very similar structure, so it is in principle simply a matter of copying the advanced
notebook over to a form of the release repository and doing one final Pull Request. Note, however, that other
STScI reviewers may comment on this stage. It is also important for the authors to do an additional check over
the notebook to ensure that it uses released (not developer) versions of requirements where possible. It is also
a good opportunity to fill in the scientific context of a given notebook - e.g. add a motivation section, or a final
plot at the bottom that shows the final science result. Once this is done, and the Pull Request merged, the notebook
can be declared complete.

Revision Based on Community Feedback

Of course, science does not stand still! As time passes some of the completed notebooks may have enhancements
or changes necessary. In general these follow the standard Pull Request workflow and can be submitted by anyone
once the notebook is public (both in and out of STScI). While the repo maintainers manage this process, the notebook
authors may be called in from time to time to provide opinions or perspectives on any proposed changes.

Submitting Notebooks

This section outlines how to submit notebooks.
New notebooks development occurs in the dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository. As such, new notebooks should be submitted by
making a pull request (PR) in the STSCI dat_pyinthesky repository
(this is the Pre-Baseline Stage). After the review process, the notebooks will be merged
(this is the Baseline Stage). At this point, it will be public to the community and will be moved to a cleaner
github repo jdat_notebooks [https://github.com/spacetelescope/jdat_notebooks] where notebooks are also
rendered [https://spacetelescope.github.io/jdat_notebooks/].
All further development will happen directly in the dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository!

What to Submit:

	Data Files (Upload to Box).

	Jupyter Notebooks (Upload to GitHub).

	Requirements File (Upload to GitHub).

Check List

Before and after submitting your notebook, requirement files and data, please make sure the following items are in order:

- [] Box:

 - [] Data has been uploaded to box.
 - [] The data is bing shared via link. Make sure the settings allow for anyone with a link to download.

- [] GitHub:

 - [] Notebook has all cell outputs cleared out.
 - [] Notebook is written in `Python 3`
 - [] All imports occur at the beginning of the notebook.
 - [] All data is loaded into the notebook via a URL from box. (No local files being used).
 - [] Verify that the python code satisfies PEP 8.
 - [] Comments and unused lines of code are removed.
 - [] `requirements.txt` file is included.

Tip

If you copy and paste this checklist into your PR as a comment or description, it will render as a checklist with
radio buttons you can toggle any time.

Box Submissions

All data files should be uploaded to STScI’s box folder and made sharable via URL.
All notebooks should use human readable URLs in the notebooks when loading/reading data.
For instructions on submitting data files, please visit the Uploading Data to Box section.

GitHub Submissions

Science Notebooks and requirements files files should be submitted
by making a pull request against the main branch of the STScI dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository. For instructions on
how to crate a GitHub pull request, please see the GitHub Guidelines section of this documentation.

Important

New notebooks should be added to the dat_pyinthesky/jdat_notebooks directory.

You must first create a new folder in the dat_pyinthesky/jdat_notebooks directory and name the new folder something
relevant to the topic of the notebooks being submitted (think of this a short title).
For example, dat_pyinthesky/jdat_notebooks/spectral_fitting.
This “title” will also be used to name the folder on Box containing the data files used by the
notebook. After creating a new folder and naming it, please place all notebooks and requirement files inside of it.

The folder name (“short title”) should be:

	Related to the topic of the notebooks.

	Unique to avoid confusion/conflicts with existing notebooks.

	Reasonable in length (makes navigating in a terminal easy).

	All small letters.

	Using underscores instead of spaces. For example “spectral fitting” -> “spectral_fitting”

GitHub Guidelines

	GitHub Setup
	GitHub Accounts

	Repository Setup

	Git and GitHub Workflow

	Making a Pull Request (PR)

Review Process

After creating a Pull Request (PR), your PR will undergo a science and technical review.
The automatic testing infrastructure will also attempt to render your notebook. Reviewers will leave comments in your
PR with suggested changes or give their approval. If changes are recommended or requested, you can
update your PR via the steps described in the Git and GitHub Workflow section. Once the
all reviewers approve and the automated tests pass, the PR will be merged into the official STScI repo.

GitHub Setup

GitHub Accounts

GitHub, is provider of internet hosting for software development and version control using Git.
It offers the distributed version control and source code management functionality of Git, plus its own features.
If you don’t have a GitHub account, please visit GitHub’s sign up page [https://github.com/join].

Repository Setup

Step 1: Fork the STScI Repository

The first step is to create a GitHub copy of the STScI dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository.
The copied repository on your GitHub account is called a “fork”. To make a fork, click on the ``fork`` button at the
upper right corner of the STScI’s dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository. A dialog should popup up and you can select your GitHub
account to create the fork.

[image: _images/github_fork.png]
Step 2: Clone the Repositories

After you create a fork of the STScI repository, you should now have a copy of the STScI repository under your GitHub account.
The next step is to make a copy of both your and STScI’s GitHub repositories on your local machine. That way you can make
edits on your computer and send the changes to your online repository (fork). The process of making a local copy is called
cloning. To clone the dat_pyinthesky repos, open up a terminal window and cd into a directory you would like
to save your local copy. Then run the following bash commands:

clone the repository
git clone https://github.com/spacetelescope/dat_pyinthesky

cd into the local repository (clone)
cd dat_pyinthesky

rename the online version of the repo
from "origin" to "stsci" (since you cloned STScI's version)
git remote rename origin stsci

Next, you want to link your online GitHub version of the repository (fork) to your local version. Copy the URL to your
fork and run the following command in the terminal
(make sure you are still in the dat_pyinthesky folder in the terminal):

add your GitHub copy
git remote add <your_github_username> <your_fork_url>

Warning

Make sure not to confuse your fork’s URL with the official STScI URL. Your fork’s URL will have the following format:

https://github.com/<your_github_username>/dat_pyinthesky

Step 3: Check Remote URLs

At this point, you have finished setting up your local clone of the repository. To check if the setup was successful,
run the following command to list URLs:

list remote URLs
git remote -v

This should return:

<your_github_username> https://github.com/<your_github_username>/dat_pyinthesky.git (fetch)
<your_github_username> https://github.com/<your_github_username>/dat_pyinthesky.git (push)
stsci https://github.com/spacetelescope/dat_pyinthesky.git (fetch)
stsci https://github.com/spacetelescope/dat_pyinthesky.git (fetch)

Step 4: Create a New Branch

Next, create a new branch and name it. You can name your new branch anything relevant to your notebook.
Its best to use a short name since you wll need to type it in the terminal often. Do this by running:

git checkout -b <branch_name>

This will automatically change the current branch to the new branch;
it will stay on this branch until you manually change it or create a new one.

Tip

To change to an already existing branch, run git checkout <branch_name>

Step 5: Synchronize New Branch to STScI

You should update the branch to make sure its in sync with the STScI main branch. To do this, run:

Fetch changes
git fetch stsci main

Pull (download) changes
git pull stsci main

Git and GitHub Workflow

This section outlines the Git and GitHub workflow.
Each time you update your notebook, follow the instructions below to “save” your changes.
The workflow outlined in the sub-sections below can be summarized with the following set of commands:

cd into directory
cd dat_pyinthesky/jdat_notebooks/<name_of_your_folder>

Check status
git status

Add files to commit
For each file, run:
git add <file_name>

Check status (files added should be in green)
git status

Commit with comments
git commit -m "short description of changes"

When ready to upload, Push to your fork
git push <your_github_username> <branch_name>

Step 1: Prepare Files Locally

Next step is to create or update your files to your local repository before uploading them to GitHub.
As mentioned above, create a new folder with your project name in the
dat_pyinthesky/jdat_notebooks directory. Add your Science Notebooks and
requirements files into the new folder. Please make sure to
clear cell ouputs in your notebooks before continuing.

Note

Remember to clear all cell outputs in your notebooks.
See the Clearing Notebook Outputs for instructions.

Step 2: Add

Using your terminal, you must first cd into the folder you created:

cd dat_pyinthesky/jdat_notebooks/<name_of_your_folder>

Check Status: First step is to check what changes are available to be added and committed to the repository history.
To get a list of changes and their status, run:

git status

This will return a list of files that have been added to the local repository. Files that are not staged for commit, are
highlighted in red. Files staged for commit are listed in green. To select file to be staged for commit, you must first
“add” them. Thing of “adding” as selecting which files you want to include in your commit.

Add Files to Upload: To add files to commit, run the following command for each file:

git add <file_name>

Check Status Again: After adding the files, you should check one more time if the files you intend to commit are
staged. To do this, run:

git status

This time the files you selected should be in green font under Changes to be committed.

Step 3: Commit

Now you may commit the files to your local git history. When you commit changes, you should leave short
comments describing the changes being introduced in the commit. To add a comment, you can append -m "comments" at
the end of the commit command. To commit changes with a comment, run the following command:

git commit -m "short description of changes"

Step 4: Push

You can now push (upload) the changes to your GitHub fork. To do this, run the following command:

git push <your_github_username> <branch_name>

Tip

If you are not sure what branch you are working on, run git branch

You will be prompted for your GitHub user name and password. After entering your credentials, your changes will be
uploaded to your GitHub fork (online copy).

Making a Pull Request (PR)

Step 1: Open PR Tab on GitHub

To create a pull request, navigate to the STScI dat_pyinthesky [https://github.com/spacetelescope/dat_pyinthesky] repository on GitHub and click on the
Pull Request:

[image: _images/github_pr_tab.png]
Step 2: Click New PR Button

[image: _images/github_pr_button.png]
Step 3: Compare Across Forks

[image: _images/github_compare_across_forks.png]
Step 4: Select Your Fork and Branch

Use the drop down menu to select your fork and branch. If you can not find your branch, first try to refresh the page.
If you still can not find your branch, something probably went wrong in the Git and GitHub Workflow section.

[image: _images/github_select_pr_fork_branch.png]

Note

Make sure the base repository (left side) is set to the spacetelescope/dat_pyinthesky and main branch.

Step 5: Write a Description and Create PR

Once the PR form pops up, fill in the title with the name of your notebook or project. In the description box,
leave a description of your notebook and the data it uses.

Tip

If you copy and paste the checklist in the Check List section, it will render as a checklist with
radio buttons you can toggle any time.

[image: _images/github_edit_pr.png]
Step 6: Updating Your PR

Once the PR is created, you can update it by pushing new changes to your fork. This means that you can simply follow
the steps described in the Git and GitHub Workflow section and GitHub will automatically update your PR to reflect the changes.

See also

For more information on making pull request visit the
GitHub PR documentation [https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request]

Data Files

Since we will be sharing the notebooks with the astronomical community, the data analysed and visualized
in the notebooks need to be easily downloadable. As such, the JDAT team at STScI has set up a Box folder for
distributing data products. For security reasons, we only support data files hosted on STScI’s Box folder. Please follow
the guideline below on uploading and integrating your data files.

See also

For the most up to date information on data storage at STScI, please visit the
STScI guidelines on data storage for notebooks. [https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md].

Uploading Data to Box

Important

In order to submit your data files, you will need a Box account. Please see the
Box support page [https://support.box.com/hc/en-us/articles/360044196373-The-Basics-of-Box] for instructions.
Once you have your Box account setup, contact the JDAT team for an email invite to the STScI
jwst-data_analysis_tools folder. If you are not an STScI staff member, please request access in your pull request.

Tip

If you have multiple files, you should put them in a zip file before uploading them to Box.

Step 1: Create a New Folder: Once you have access to the jwst-data_analysis_tools folder on Box,
you may create a new folder with the same name as the folder containing
your notebook and requirements.txt (see GitHub Submissions section for naming conventions).
Once the folder is created, you may upload your data files into that folder.

[image: _images/box_new_folder.png]
Step 2: Upload Data Files: To upload files, navigate into your the folder you created and select File
under the Upload menu.

[image: _images/box_upload.png]
Step 3: Sharing Settings: The files you uploaded should be shareable to the public. For each file you uploaded and
hover over the file name. Select the Share button to open the sharing options.

[image: _images/box_share_button.png]
Once the sharing dialog opens up, make sure the Shared Link radio button is toggled on and
that the People with the link option is selected.

[image: _images/box_share_options.png]
Once the file is shared, a blue link icon will appear next to the name of the file.

Note

Make sure the folder is also being shared and that the People with the link option is selected. You can check
by clicking the blue share button on the upper right corner of the page. You must be viewing the folder you created
before clicking the button.

[image: _images/box_share_folder_button.png]

Step 4: Updating Data Files: You can upload new versions of your data on Box by right clicking the name of your file
and clicking Upload New Version:

[image: _images/box_update_file.png]

Box URLs in Notebooks

Important

Files on the STScI Box are assigned a human readable link and we request that notebook leads use this URL in their Notebooks.

Once your files are uploaded, you can use them in your notebooks via URL link.
The human readable URL has the following format:

https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/name_of_your_folder/name_of_file.extension

For example, lets say you created a folder called example_folder and added a file named example.fits, the URL would be:

The path on box:
jwst-data_analysis_tools > example_folder > example.fits

The URL:
https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/example_folder/example.fits

You should now be able to use this URL just like any path in your notebook. In the example above, we can open the fits
file using astropy as follows:

from astropy.io import fits

data_url = "https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/example_folder/example.fits"
hdu_list = fits.open(data_url)

Note

If you are not able to open your file using URLs, please let the team know or leave a developer note in your notebook.

If you have to download a file or have a zip file, you can use the following code to download the file
(and unzip for zip files) inside the notebook:

import os

If the example dataset has already been downloaded, comment out these lines:
import zipfile
import urllib.request

boxlink = "https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/example_folder/example.zip"
boxfile = './example.zip' # Specify output path and file name of downloaded file

Download file
urllib.request.urlretrieve(boxlink, boxfile)

Unzip .zip file
zf = zipfile.ZipFile(boxfile, 'r')
zf.extractall()

This example will download and extract data files into the same directory containing the running notebook.
Since how you zip your files determines the directory structure of the unzipped data,
please use your code to download the files and check to make sure the paths in your notebook match the file structure
of your unzipped data.

Jupyter Notebooks

Please see the Development Procedure section for notebook development guidelines.

See also

For detailed instructions on formatting notebook, please visit the
STScI notebook style guide. [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md]

Installation

For instructions on how to install Jupyter notebooks, please visit the
Jupyter Installation page [https://jupyter.org/install].

We also strongly recomend using Conda [https://docs.conda.io/projects/conda/en/latest/index.html] for
managing environments. If you need instructions on how to setup Conda, please see the Conda’s
Getting Started [https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html] documentation.

Important

Please note that all JDAT related code is written Python 3; Python 2 is not supported.

Starting a Notebook

In your terminal, cd into the directory you would like to work in and run jupyter notebook.
If a web browser does not pop up, use the URL in the terminal output to open the Jupyter home page.

Creating a New Notebook

To create a new notebook, navigate to the directory you would like to work in and select the Python 3 option
under the new menu item:

[image: _images/notebook_new_notebook.png]

Markdown

“Markdowns” are used to add supporting literature to notebooks. To convert a cell to markdown,
select it with your courser and select markdown in the cell type drop down menu.

[image: _images/notebook_markdown.png]
Once the cell converts to a markdown cell, you can enter your text and equations. If you have links to an image, you
can embed them and they will be rendered when you run the cell.
After you are done editing, make sure to run the cell (Shift + Enter) to render the markdown

See also

See Adam Pritchard’s markdown cheatsheet [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet]
for tips and instructions.

Developer Notes

Developer notes are used to leave notes or feedback for the JDAT developers.
A developer note should be a part of the notebook itself and should be a
single markdown cell. That cell should begin with the text *Developer Note:*.
For example:

Developer Note:
Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single
simple function that just did `spec = simulate_jwst_spectrum(a, b)`.

Clearing Notebook Outputs

All cell outputs of the notebook should be cleared before opening or updating a pull request. This is because fully
rendered notebooks with figures can take up large amounts of storage space. Please make sure your results are
reproducible (you do not need the outputs) because clearing the notebook is not revisable. To clear notebook cell outputs,
please click Kernel in the Jupyter menu and select Restart & Clear Output.
After the notebook restarts, make sure to save the notebook before closing and submitting it.

[image: _images/notebook_restart_and_clear_outputs.png]

Multiple Notebooks

If you have multiple notebooks that need to run in a specific sequence, please name the notebooks
by prepending a number before each notebook title according to the sequence (up to 99 notebooks allowed). For example:

dat_pyinthesky
└── jdat_notebooks
 └── example_folder
 ├── 01_generate_simulated_data.ipynb
 ├── 02_run_calibration_pipeline.ipynb
 ├── 03_data_analysis.ipynb
 └── requirements.txt

Pep-8 Guideline

Please see STScI’s Python Guideline [https://github.com/spacetelescope/style-guides/blob/master/guides/python.md] and
the official Pep-8 Guideline [https://www.python.org/dev/peps/pep-0008/] for more information.

See also

	STScI notebook style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md]

	STScI Python style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/python.md]

Requirements File

A pip requirements file is a text file, named requirements.txt, that contains a list of Python packages needed to
run science notebooks. When users download a science notebook, they need this requirements file to install the necessary
Python packages. Therefore, Notebook Leads will need to provide a requirements file in addition to their notebooks.

Listing Packages: Each Python package should be listed in a new line in the requirements file.
You should only list packages imported into your notebook (used in your notebook).
You can make a list of packages by looking though import statements in your notebook.
Packages that are native to Python, such as os or math, should not be listed in the requirements file.

Tip

You can get a list of package versions by running conda list or pip list in your terminal.

To specify a version of the package, you can use the == operator (for example astropy==4.1).
Please list all requirement versions to match the conda or pip environment you used to develop your notebooks.
If you need to add a Python package only available on GitHub, you can list the module as follows:

Package on GitHub:
git+https://github.com/name_of_repo

If you need to specify a branch:
git+https://github.com/name_of_repo#branch_name

Example: Here is an example requirements file (requirements.txt):

numpy==1.19.1
jupyter==1.0.0
aplpy==2.0.3
astrodendro==0.2.0
astropy==4.0.1.post1
matplotlib==3.3.1
photutils==0.7.2
scipy==1.5.0
specutils==1.0
git+https://github.com/spacetelescope/jwst#0.16.2

Tip

To install packages in a requirements.txt file, use pip install -r requirements.txt

Warning

Before installing a new set of packages from a requirements file, one should consider creating a new Conda
environment. If you need to setup Conda, please see the Conda’s
Getting Started [https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html] documentation.

Sometimes, the dev team adds an extra requirement file named pre-requirements.txt. This file is used for the testing
infrastructure and should be installed before the requirements.txt. The notebook lead is not expected to
contribute the pre-requirements.txt file.

Useful Links

	Jdaviz documentation [https://jdaviz.readthedocs.io/en/latest/]

	Data Analysis Tools JDox Page [https://jwst-docs.stsci.edu/jwst-post-pipeline-data-analysis]

	Technical details about the GitHub notebook stages and process [https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks/#Development-Procedure-for-JDAT-Notebooks]

	Astropy core libraries [https://docs.astropy.org/en/stable]

	Astropy affiliated packages [https://www.astropy.org/affiliated/index.html]

	Visualization tools [https://github.com/spacetelescope/jdaviz]

	Existing notebooks [https://github.com/spacetelescope/dat_pyinthesky/tree/main/jdat_notebooks]

	Pep 8 coding style guide [https://www.python.org/dev/peps/pep-0008/]

	Notebook Style Guide [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md]

Developers and Staff

	STScI Notebook Leads
	Notebook Draft

	Join a Sprint

	Technical Review
	Instructions for Technical Reviewers

	Science Review
	Instructions for Science Reviewers

STScI Notebook Leads

Important

	Sign Up: Talk to Camilla Pacifici and Ori Fox to find a use case that suits your scientific and technical interests.

	Charge your timecard: P0004.06.05.09

Notebook Draft

Start writing your notebook and think through the following. Contact Cami or Ori along the way to ask questions. We don’t expect you to perfectly integrate all tools on your own.

	Manage your time. Consider you will likely need to spend 50% of your time writing your notebook draft, and 50% in the Sprint and Review stage. A realistic rough estimate is 30 hours total, so 15 hours at each phase.

	Download the notebook template and make sure to document your work as much as possible. It is important to communicate the purpose of your notebook and where you obtained your data, as well as the algorithms you use to do the science.

	Where did you get your data?

	What is the scientific purpose of the notebook?

	Which tools/packages do you use?

	We prefer you use JWST simulated data, but we realize this is not always possible. Please communicate with Cami and Ori in advance about where you will obtain your data.

	Does my desired functionality exist in astropy and, specifically, specutils, photutils, and the visualization tools?

	If so, am I using it? Am I using it correctly?

	If not, what needs to be done to enable it? Make a developer note inside your cell.

	Make sure parts of your code are devoted to science validation.

	Break the notebook down into many, focused cells. Follow the notebook style guide.

	Consider making your science as generalized as possible.

	If you get stuck, contact anyone above (step e) or use #jdadf_dev channel on slack.

	Upload your notebook on dat_pyinthesky as soon as you feel comfortable doing so.

Join a Sprint

When you have completed your notebook draft, you are ready to join a developer sprint.

	Contact either Cami or Ori to sign up for a 2-week long sprint when you can devote time to developing your notebook. You will be invited to a number of different meetings throughout a 2 week period.

	Attend an Orientation Meeting the week before your Sprint is set to begin, including a live technical review to understand the process.

	Prepare by bringing a list of developer notes and/or personal notes where you think your notebook could be improved with new functionality built into the tools.

	Attend the kick-off meeting (usually Monday 2pm) where you will meet the team, learn about the Product Owners (POs), and be assigned a scientific reviewer and a technical reviewer (this part can also happen offline).

	Schedule a meeting with your technical reviewer.mFocus on utilizing the correct libraries and functionality. Learn to turn your notes into Jira tickets and GitHub issues, as well as the process for having those tickets implemented and integrated back into your notebooks.

	Attend a couple tag-ups each week, which happen every morning at 10.30am via bluejeans; this will provide you with an opportunity to focus on development of individual cells within a notebook

	Attend the Viz Tool hack hour (typically the second Monday of the sprint at 11am) to focus on notebook workflow using the Viz Tools

	If you get stuck, contact anyone above (step e) or use #jdadf_dev channel on slack.

	Make sure parts of your code are devoted to science validation.

	Attend the Review meeting (usually at the end of the sprint on Monday at 1:30pm) and show your notebook (this is also an opportunity to give feedback on the process).

Technical Review

Note

This page is under construction

Instructions for Technical Reviewers

The reviewer will need to:

	Verify that the language satisfies PEP 8.

	If not, suggest the appropriate changes.

	Check that the necessary data are stored as requested in the guidelines.

	Verify that the currently available core-libraries functionalities and visualization tools are used when needed.
If not (i.e., Author has written their own functionalities), suggest new code that calls the already available libraries.
Address the ‘Developer Notes’.

Science Review

Note

This page is under construction

Instructions for Science Reviewers

The reviewer will be provided the link to the PR. They will need to check that:

	The notebook shows a scientific result.

	The modeling used is sound.

	The plotting is clear.

	The comments are sufficient and clear.

Index

 _images/notebook_restart_and_clear_outputs.png
File Edit View Insert Cell Widgets Help
1 1

B+ < @ B 2+ ¢ MR

In []:

1

Interrupt

Restart

Restart & Clear Output

Restart & Run All
Reconnect

Shutdown

Change kernel

_static/minus.png

_static/plus.png

_static/file.png

_images/box_share_button.png
Name ~

example.fits

Size

0B

_images/box_share_folder_button.png
EENLAENTC

2

_images/box_new_folder.png
™ Upload ~ New -
" Folder
2 Bookmark
7 Box Note
7 Box Note From Template

Google Doc

Google Sheet

1

_images/box_share_options.png
Share ‘example.fits’

Invite People

Invite as Editor ~

Share Link

‘) Shared link is created Link Settings

https:/stsci.box.com/s/12k8probnb70ny7q8y Copy 4}

People with the link « |Can view and download ~

v People with the link

Publicly accessible and no sign-in required

People in your company
Anyone in your company with the link or people invited to this file can access

Invited people only
Only invited people can access this file

_images/box_update_file.png
Name ~ Right Click;

example.fits
@ Open on Desktop App
&) Share
£ Upload New Version
& Download
T Trash
[Collections >
B Move or Copy
A Lock
= Properties >

«++ More Actions >

_images/box_upload.png
™ Upload - New ~ Q2
1

File

" Folder

nav.xhtml

 Table of Contents

 		
 JWST Data Analysis Tool Notebooks (pyinthesky)

 		
 Development Procedure

 		
 Draft Stage

 		
 Baseline Stage

 		
 Notebook-driven Development

 		
 Advanced Stage

 		
 Final Notebook - Maintenance Stage

 		
 Revision Based on Community Feedback

 		
 Submitting Notebooks

 		
 Check List

 		
 Box Submissions

 		
 GitHub Submissions

 		
 GitHub Guidelines

 		
 GitHub Setup

 		
 Git and GitHub Workflow

 		
 Making a Pull Request (PR)

 		
 Review Process

 		
 Data Files

 		
 Uploading Data to Box

 		
 Box URLs in Notebooks

 		
 Jupyter Notebooks

 		
 Installation

 		
 Starting a Notebook

 		
 Creating a New Notebook

 		
 Markdown

 		
 Developer Notes

 		
 Clearing Notebook Outputs

 		
 Multiple Notebooks

 		
 Pep-8 Guideline

 		
 Requirements File

 		
 Useful Links

 		
 Developers and Staff

 		
 STScI Notebook Leads

 		
 Notebook Draft

 		
 Join a Sprint

 		
 Technical Review

 		
 Instructions for Technical Reviewers

 		
 Science Review

 		
 Instructions for Science Reviewers

_images/github_fork.png
& spacetelescope / dat_pyinthesky ®uUnwatch v 17 ¢ Star 4

<> Code (0) Issues 36 1% Pull requests 6 (») Actions [Projects 07 wiki

_images/github_pr_button.png
& spacetelescope / dat_pyinthesky ®unwatch v+ 17 v Star 4 % Fork = 33

<> Code () Issues 36 1% Pull requests 6 (») Actions [Projects 07 wiki

Filters v (is:pris:open © Labels 21 c® Milestones 0 New pull request

_images/github_compare_across_forks.png
Compare changes

Compare changes across branches, commits, tags, and more below. If you need to, you can also
compare across forks.

2 base: masterv & compare: master v

_images/github_edit_pr.png
Title of Your Notebook Reviewers

No reviews
Write Preview H B T = O & =i @ ¢ «a-
Assignees
Description of your notebook and data No one—assign yourself
Submission Check List Labels
None yet
-[]1Box:
Projects
- [1 Data has been uploaded to box. None yet
- [1 The data is bing shared via link. Make sure the settings allow for anyone with a link to download.
- [1GitHub: Milestone

No milestone
- [1 Notebook has all cell outputs cleared out.
- [1 Notebook is written in *Python 3"
- [1 All imports occur at the beginning of the notebook.
- [1 All data is loaded into the notebook via a URL from box. (No local files being used). Use Closing keywords in the description to
- [1 Verify that the python code satisfies PEP 8. automatically close issues
- [1 Comments and unused lines of code are removed.

- [1 ‘requirements.txt" file is included. y Helpful resources

Attach files by dragging & dropping, selecting or pasting them. GitHub Community Guidelines

Create pull request v
Allow edits by maintainers (2

@ Remember, contributions to this repository should follow our GitHub Community Guidelines.

Linked issues

_images/jda_notebooks_logo_wbg.png
JWST Data Analysis

Notebooks

'iiiil

_images/notebook_markdown.png
File Edit View Insert

B+ x gD » ¢

Cell

M Run

Kernel

HC »

Widgets

Code

Help

_images/github_pr_tab.png
& spacetelescope / dat_pyinthesky ®Unwatch v 17 Yy Star 4 % Fork 33

<> Code () Issues 36 1% Pull requests 6 (») Actions [Projects 07 wiki

_images/github_select_pr_fork_branch.png
Compare changes

Compare changes across branches, commits, tags, and more below. If you need to, you can also compare across forks.

Select Your Fork Your Branch
T:l base repository: spacetelescope/dat_pyinthe... ~ base:main v <« head repository: spacetelescope/dat_pyinthe... ~
1 2

Choose different branches or forks above to discuss and review changes. Learn about pull requests Create pull request

_images/notebook_new_notebook.png
Fies | Running Clusters

Select items to perform actions on them. uptoaa [ew=]

Notebook:

0 |~ W/ dat pyinthesky / jdat notebooks / example_folder Name &

o. dl-workshop 2

e

The notebook list is empty. oer
Text File.
Folder

Terminal

